

Harald Mumm

Optimale Lösungen von Tourenoptimierungsproblemen mit geteilter Belieferung, Zeitfenstern, Servicezeiten und vier LKW-Typen

Heft 8/2012

Die Fakultät für Wirtschaftswissenschaften der Hochschule Wismar, University of Applied Sciences – Technology, Business and Design bietet die Präsenzstudiengänge Betriebswirtschaft, Wirtschaftsinformatik und Wirtschaftsrecht sowie die Fernstudiengänge Betriebswirtschaft, Business Consulting, Business Systems, Facility Management, Quality Management, Sales and Marketing und Wirtschaftsinformatik an. Gegenstand der Ausbildung sind die verschiedenen Aspekte des Wirtschaftens in der Unternehmung, der modernen Verwaltungstätigkeit, der Verbindung von angewandter Informatik und Wirtschaftswissenschaften sowie des Rechts im Bereich der Wirtschaft.

Nähere Informationen zu Studienangebot, Forschung und Ansprechpartnern finden Sie auf unserer Homepage im World Wide Web (WWW): http://www.wi.hs-wismar.de/.

Die Wismarer Diskussionspapiere/Wismar Discussion Papers sind urheberrechtlich geschützt. Eine Vervielfältigung ganz oder in Teilen, ihre Speicherung sowie jede Form der Weiterverbreitung bedürfen der vorherigen Genehmigung durch den Herausgeber.

Herausgeber: Prof. Dr. Hans-Eggert Reimers

Fakultät für Wirtschaftswissenschaften

Hochschule Wismar

University of Applied Sciences – Technology, Business

and Design Postfach 12 10 D – 23966 Wismar

Telefon: ++49/(0)3841/753 7601 Fax: ++49/(0)3841/753 7131

E-Mail: hans-eggert.reimers@hs-wismar.de Fakultät für Wirtschaftswissenschaften

Hochschule Wismar Phillipp-Müller-Straße

Postfach 12 10 23952 Wismar

Telefon:++49/(0)3841/753-7468 Fax: ++49/(0) 3841/753-7131

E-Mail: silvia.kaetelhoen@hs-wismar.de

Homepage: http://www.wi.hs-wismar.de/de/for-

schung_kooperationen/wismarer_diskussionspapiere

ISSN 1612-0884 ISBN 978-3-942100-97-7 JEL-Klassifikation C61 Alle Rechte vorbehalten.

Vertrieb:

© Hochschule Wismar, Fakultät für Wirtschaftswissenschaften, 2012. Printed in German

Inhaltsverzeichnis

1. Einleitung	4
2. Vier Beispielszenarien	4
3. Die Ein-und Ausgabedaten im tabellarischen Überblick	6
4. Schlussbemerkungen	13
Literatur	14
Autorenangaben	14

1. Einleitung

Diese kurze Arbeit stellt vier optimale Lösungen für das sogenannte Split Delivery Vehicle Routing Problem with Time Windows (SDVRPTW) vor. Eine detaillierte Beschreibung dieser Problemklasse findet man in [Des2010]. Diese Arbeit nimmt insofern eine Erweiterung gegenüber [Des2010] vor, als dass hier mehrere (vier) LKW-Typen zugelassen wurden und gegenüber [Mu2011], dass Zeitfenster hinzugekommen sind. Die hier vorgestellten optimalen Beispiel-Lösungen wurden mit einem gemischt ganzzahligem Linearen Programm in der Sprache GMPL beschrieben und mittels IBM-ILOG-CPLEX-Solver in der Version 12.3 berechnet. Als Zwischenformat diente das lp-Format. Es werden sämtliche Eingabedaten und Parameter angegeben, so dass Hersteller von Tourenplanungssoftware und deren Nutzer die hier vorgestellten Lösungen als Maßstab für die Qualität ihrer Software verwenden können. Die hier betrachteten Probleme haben eine kombinatorische Komplexität, d.h. ab einer gewissen Problemgröße wird es niemals optimale Lösungen mit den heutigen Computerarchitekturen geben können. Weil in der Praxis aber häufig gar nicht so große Problemstellungen auftreten, z.B. weil ein LKW-Fahrer pro Tag nur eine begrenzte Zeit, z.B. 600 Minuten, einen LKW lenken darf, oder eine Firma ihr Vertriebsgebiet bereits in Vertriebsgebiete mit weniger als zehn Orten aufgeteilt hat, wird weltweit nach Methoden zur Bestimmung optimaler Lösungen des SDVRPTW gesucht.

2. Vier Beispielszenarien

Die folgenden Beispiele beziehen sich sämtlich auf Lastkraftwagen (LKW), die exemplarisch ihre Waren vollständig auf Euro-Paletten aufnehmen. Ein Sattelschlepper kann z.B. 33 Europaletten aufnehmen, hat also eine Fläche vom 33 fachen einer Europalette, ein kleinerer LKW mit Anhänger nimmt 36 Paletten und ohne Anhänger 18 oder auch nur 15 Paletten auf, je nach Gewicht. Es werden zehn bzw. acht Orte betrachtet, die von einem Depot aus zu beliefern sind. Die Bedarfe der Orte werden in Stück Paletten angegeben. Die Paletten sind beladen, z.B. mit Plastikkästen oder Kartons.

Es wird davon ausgegangen, dass beliebig viele konkrete Fahrzeuge aller betrachteten LKW-Typen vorhanden sind. Eine Variante mit begrenzter Anzahl von LKW je Typ ist in Vorbereitung. Dazu reicht es jedoch nicht, nur die Anzahl der Touren für alle zugelassenen LKW-Typen zu beschränken, weil ein LKW, insbesondere bei kurzen Touren, innerhalb einer Schicht mehrere Touren durchführen kann.

Das Depot hat ein beliebiges aber festes Zeitfenster, die Orte Nr. 1 bis 10 können höchstens zwei Zeitfenster festlegen. Die Zeitfensterangaben sind relativ zu einem Startpunkt '0' in Minuten. Das Zeitfenster des Depots schliesst in allen Beispielen nach 900 Minuten.

Gesucht ist ein Tourenplan mit minimalen Kosten, die sich aus Fahr-, Entladeund Wartekosten zusammensetzen, der alle Bedarfe von einem Depot innerhalb der festgesetzten Zeitfenster befriedigt.

Eingabedaten und Parameter

Eingabedaten sind im Vergleich zu Parametern volatiler. In der folgenden Tabelle 1 sind zehn Adressparameter enthalten.

Tabelle 1: Zehn reale Postadressen in Süddeutschland

Kunde	Straße Hausnummer	PLZ	Ort
Depot	Bleichstraße 6	89077	Ulm
Kunde1	Narzissenweg 1	70374	Stuttgart
Kunde2	Allee 4	74072	Heilbronn
Kunde3	Alte Gasse 22	86152	Augsburg
Kunde4	Am Westpark 5	85057	Ingolstadt
Kunde5	Steinstraße 27	81667	München
Kunde6	Schleifweg 28	91522	Ansbach
Kunde7	Grabenstraße 22	73033	Göppingen
Kunde8	Gottmannplatz 2	78467	Konstanz
Kunde9	Im Weiler 25	72770	Reutlingen
Kunde10	Herderstraße5	76185	Karlsruhe

Auch die hieraus per Geoinformatik gewonnene Entfernungsmatrix (siehe Tabelle 2) gehört zu den Parametern.

Ihre Werte bestehen aus Fahrminuten für schnelle LKW mit Autobahnbenutzung. Die Qualität der Entfernungsdaten ist für die Optimierung sehr wichtig. Nur wenn die Entfernungsdaten die sogenannte Dreiecksungleichung erfüllen, sind die Ergebnisse der Optimierung sinnvoll. Die Dreiecksungleichung besagt, dass die direkte Entfernung zwischen zwei Orten niemals größer sein darf als ein Umweg über einen dritten Ort.

Tabelle 2: Entfernungsmatrix für Depot und zehn Orte in Minuten

Orte	Nr 0	Nr 1	Nr 2	Nr 3	Nr 4	Nr 5	Nr 6	Nr 7	Nr 8	Nr 9	Nr 10
Nr 0		100	133	75	157	133	127	70	209	113	138
Nr 1	100		66	159	241	217	148	63	172	79	90
Nr 2	133	66		191	204	249	106	112	195	114	86
Nr 3	75	159	191		100	76	171	127	242	171	195
Nr 4	157	241	204	100		82	127	206	317	250	274
Nr 5	133	217	249	76	82		183	185	262	229	253
Nr 6	127	148	106	171	127	183		155	277	196	175
Nr 7	70	63	112	127	206	185	155		188	87	112
Nr 8	209	172	195	242	317	262	277	188		156	200
Nr 9	113	79	114	171	250	229	196	87	156		117
Nr 10	138	90	86	195	274	253	175	112	200	117	

Aus der Praxis wurden folgende Umrechnungsfaktoren für eine Fahrminute in Abhängigkeit vom LKW-Typ in Euro vorgegeben.

Tabelle 3: Kosten je Fahrminute in Abhängigkeit von der LKW-Kapazität

LKW-Kapazität	LKW-Kosten
15 Paletten	0,61
18 Paletten	0,62
33 Paletten	0,91
36 Paletten	0,92

Die LKW-Kosten in Tabelle 3 stellen Euro je Fahrminute dar.

Servicezeiten tragen der Tatsache Rechnung, dass man zur Entladung von LKW Zeit benötig. Sie sind normalerweise mengenabhängig.

Zur Vereinfachung sind hier Servicezeiten lediglich ortsabhängig und nicht von der Anzahl der auszuladenden Zahl von Paletten abhängig. Die Kosten einer Servicezeitminute werden über ortsabhängige Faktoren (SZ-Kosten/Minute) ermittelt. Auf Grund der Zeitfenster kann es vorkommen, dass LKW warten müssen, bevor die Abladung beginnen kann. Eine Warteminute kostet hier konstant 0,50 Euro, ist also vom LKW-Typ unabhängig. Wenn man diesen Wert LKW-Typ-abhängig machen würde, bekäme man eine quadratische Zielfunktion.

3. Die Ein-und Ausgabedaten im tabellarischen Überblick

In den folgenden Tabellen 4 und 5 sind die Bedarfe die Eingabedaten, die anderen Merkmale (Zeitfenster, Servicezeiten usw.) gehören zu den Parametern. Das Depot habe eine Zeitfensterobergrenze von 900 Minuten. Alle Zeitangaben verstehen sich in Minuten relativ zum Startzeitpunkt 0.

Tabelle 4: Eingabedaten sowie Parameter für ein SDVRPTW für die ersten fünf Orte

	Orte mit	Orte mit Zeitfenstern, Serviczezeiten und Bedarfen								
Orte	Ort1	Ort1 Ort2 Ort3 Ort4 Ort								
Bedarfe in Paletten	50	60	300	80	90					
Zeitfenster 1	237-257	343-460	60-480	180-660	120-720					
Zeitfenster 2	420-540	600-840								
Servicezeiten	20	20	20	20	20					
SZ-Kosten/Min.	0,5	0,5	0,5	0,5	0,5					

Tabelle 5: Eingabedaten sowie Parameter für ein SDVRPTW für die zweiten fünf Orte

	Orte mi	Orte mit Zeitfenstern, Serviczezeiten und Bedarfen							
Orte	Ort6	Ort6 Ort7 Ort8 Ort9 Ort10							
Bedarfe in Paletten	100	110	120	130	140				
Zeitfenster 1	60-780	60-780 120-720 180-840 60-780 120-							
Zeitfenster 2									
Servicezeiten	6 2 4 2								
SZ-Kosten/Min.	0,5	1	0,5	1	0,5				

Mit den Eingabedaten und Parametern aus den Tabellen 4 und 5 wurde folgende optimale Lösung mit einem Zielfunktionswert (ZFW) von 7908,99 Euro ermittelt.

Tabelle 6: Optimale Lösung für ein SDVRPTW mit Eingabedaten und Parametern nach Tabellen 4 und 5, ZFW=7908,99 Euro

		Errechnete Stich- und Rundtouren								
Orte	Ort1	Ort2	Ort3	Ort4	Ort5	Ort6	Ort7	Ort8	Ort9	Ort10
LKW-Typ			Err	echnete	Stichte	ouren ir	n Optii	num		
36er	1		7	2	2	2	3	3	3	3
33er		2	1							1
18er					1					
15er			1							
Restbedarfe	14	0	0	8	0	28	2	12	22	0
LKW-Typ			Err	echnete	Rundt	ouren i	m Opti	mum		
36er				1		2				
15er							2	1		
36er	2								1	

Die Zahlen in den Ortsspalten geben bei Rundtouren eine Reihenfolge, in der die Orte anzufahren sind, an. Bei den Stichtouren stellen sie deren Anzahl dar.

In der folgenden Tabelle ist eine Häufigkeitsanalyse der LKW-Typen in den Ergebnistouren notiert.

Tabelle 7: Zusammenfassung der Ergebnistouren aus dem Beispiel von Tabelle 4

LKW-Typ	Anzahl Touren	Maximale Transportmenge
36	28	1008
33	4	132
18	1	18
15	2	30
Summe	35	1188

Bei einer Gesamtbedarfsmenge von 1180 Paletten in allen zehn Orten zusammen ergibt das eine prozentuale Auslastung der Ladekapazität der LKW bei der Abfahrt vom Depot von 99,33~%.

Das zweite Beispiel unterscheidet sich vom ersten Beispiel nur in den etwas engeren ersten Zeitfenstern in den Orten Nr. 4 und Nr.6.

Tabelle 8: Eingabedaten sowie Parameter für ein zweites SDVRPTW für die ersten fünf Orte

	Orte mit Zeitfenstern, Serviczezeiten und Bedarfen									
Orte	Ort1	Ort1 Ort2 Ort3 Ort4 Ort5								
Bedarfe in Pal.	50	60	300	80	90					
Zeitfenster 1	237-257	343-460	60-480	270-290	120-720					
Zeitfenster 2	420-540	600-840								
Servicezeiten	6	2	4	2	8					
SZ-Kosten/min	0,5	1	0,5	1	0,5					

Tabelle 9: Eingabedaten sowie Parameter für ein zweites SDVRPTW für die zweiten fünf Orte

	Orte mit Zeitfenstern, Serviczezeiten und Bedarfen										
Orte	Ort6	Ort6 Ort7 Ort8 Ort9 Ort10									
Bedarfe in Pal.	100	110	120	130	140						
Zeitfenster 1	147-153	120-720	180-840	60-780	120-600						
Zeitfenster 2											
Servicezeiten	6 2 4 2										
SZ-Kosten/min	0,5	1	0,5	1	0,5						

Mit den Eingabedaten und Parametern aus den Tabellen 8 und 9 wurde folgende optimale Lösung mit einem Zielfunktionswert (ZFW) von 7913,99 Euro ermittelt.

Tabelle 10: Optimale Lösung für ein SDVRPTW mit Eingabedaten und Parametern nach Tabellen 8 und 9, ZFW=7913,99 Euro

		Errechnete Stich- und Rundtouren								
Orte	Ort1	Ort2	Ort3	Ort4	Ort5	Ort6	Ort7	Ort8	Ort9	Ort10
LKW-Typ			Err	echnete	Stichte	ouren ir	n Optii	num		
36er	1		7	2	2	2	3	3	3	3
33er		2	1							1
18er					1					
15er			1							
Restbedarfe	14	0	0	8	0	28	2	12	22	0
LKW-Typ			Err	echnete	Rundt	ouren i	m Opti	mum		
36er				4		1				
15er							2	1		
36er	2								1	

Die Häufigkeitsanalyse des Ergebisses aus Tabelle 12 stimmt mit derjenigen aus Tabelle 6 überein, ebenso die Auslastungskennziffer.

Auf Grund des neuen sehr engen Zeitfensters (127-133) im Ort Nr. 6 beim zweiten Beispiel muss auf der ersten Rundtour aus Tabelle 12 zuerst der Ort Nr. 6 angefahren werden. Die Weiterfahrt nach Ort Nr. 4 oder der Beginn der Entladung in Ort Nr. 6 erfordert eine LKW-Wartezeit von zehn Minuten (ergibt fünf Euro Mehrkosten), da das Zeitfenster im Ort Nr. 4 erst nach 270 Minuten öffnet, der LKW aber schon nach 260 Minuten ankommt, weil es vom Depot zum Ort Nr. 6 127 Minuten bedarf, und vom Ort Nr. 6 zum Ort Nr. 4 ebenfalls 127 Minuten zuzüglich 6 Minuten Servicezeit im Ort Nr. 6.

Bei Bedarfen modulo 36 ergeben sich die folgenden zwei Ergebnistabellen:

Tabelle 11: Optimale Lösung für ein SDVRPTW mit Palettenbedarfen modulo 36, Zeitfenster und Servicezeiten nach Tabellen 4 und 5, ZFW=1744,27 Euro

	Errechnete Stich- und Rundtouren									
Orte	Ort1	Ort2	Ort3	Ort4	Ort5	Ort6	Ort7	Ort8	Ort9	Ort10
LKW-Typ			Err	echnete	Stichte	ouren ii	n Optii	num		
33er		1								1
18er					1					
15er			1							
LKW-Typ			Erre	echnete	Rundt	ouren i	m Opti	mum		
36er	1								2	
15er							2	1		
36er				1		2				

Tabelle 12: Optimale Lösung für ein SDVRPTW mit Palettenbedarfen modulo 36, Zeitfenster und Servicezeiten nach Tabellen 8 und 9, ZFW=1749,27 Euro

		Errechnete Stich- und Rundtouren								
Orte	Ort1	Ort2	Ort3	Ort4	Ort5	Ort6	Ort7	Ort8	Ort9	Ort10
LKW-Typ		Errechnete Stichtouren im Optimum								
33er		1								1
18er					1					
15er			1							
LKW-Typ			Err	echnete	Rundt	ouren i	m Opti	mum		
36er	1								2	
15er							2	1		
36er				2		1				

Im dritten Beispiel werden aus Rechenzeitgründen nur acht Orte betrachtet und das Depot habe wieder eine Zeitfensterobergrenze von 900 Minuten und alle Orte besitzen ein zweites Zeitfenster. Die Bedarfe und fast alle weiteren Parameter (ausser den Zeitfenstern) sind darin identisch zu den anderen beiden Beispielen.

Tabelle 13: Eingabedaten sowie Parameter für ein drittes SDVRPTW für die ersten fünf Orte

Orte mit Zeitfenstern, Serviczezeit					nd Bedarfen
Orte	Ort1	Ort2	Ort3	Ort4	Ort5
Bedarfe in Paletten	50	60	300	80	90
Zeitfenster 1	180-300	120-420	60-360	0-240	180-420
Zeitfenster 2	540-660	600-780	480-720	420-600	480-720
Servicezeiten	20	20	20	20	20
SZ-Kosten/Minute	0,5	0,5	0,5	0,5	0,5

Mit den Eingabedaten und Parametern aus den Tabellen 13 und 14 wurde folgende optimale Lösung mit einem Zielfunktionswert (ZFW) von 6063,16 Euro ermittelt.

Eine Berechnung mit Bedarfen Modulo 36, also 14, 24, 12, 8, 18, 28, 2, 12, ergab hier einen optimalen Wert von 1299,30 Euro. In dieser Lösung gibt es nur noch zwei Stichtouren zu den Orten Nr.3 (15er) und Nr.5 (18er). Die Rundtouren aus Tabelle 15 bleiben fast erhalten, es ändert sich nur die Richtung.

Tabelle 14: Eingabedaten sowie Parameter für ein drittes SDVRPTW für die letzten drei Orte

	Orte mit	Zeitfenste	ern, Serviczezeiten und Bedarfen
Orte	Ort6	Ort7	Ort8
Bedarfe in Paletten	100	110	120
Zeitfenster 1	150-330	180-450	180-360
Zeitfenster 2	450-630	540-720	480-660
Servicezeiten	6	2	4
SZ-Kosten/Minute	0,5	1	0,5

Tabelle 15: Optimale Lösung für ein SDVRPTW mit Eingabedaten und Parametern nach Tabellen 13 und 14, ZFW= 6063,16 Euro

		Errechnete Stich- und Rundtouren						
Orte	Ort1	Ort2	Ort3	Ort4	Ort5	Ort6	Ort7	Ort8
LKW-Typ		Errechnete Stichtouren im Optimum						
36er	1	1	6	2	2	2	3	3
33er			2					
18er			1		1			
Restbedarfe	14	24	0	8	0	28	2	12
LKW-Typ		Errechnete Rundtouren im Optimum						
36er	1	2						
36er				1		2		
18er	2						1	3

In der folgenden Tabelle ist wieder eine Häufigkeitsanalyse der LKW-Typen in den Ergebnistouren notiert.

Tabelle 16: Zusammenfassung der Ergebnistouren aus dem Beispiel von Tabelle 15

LKW-Typ	Anzahl Touren	Maximale Transportmenge
36	22	792
33	2	66
18	3	54
Summe	27	912

Bei einer Gesamtbedarfsmenge von 910 Paletten in allen acht Orten zusammen ergibt das eine prozentuale Auslastung der Ladekapazität der LKW bei der Abfahrt vom Depot von 99,78 %.

Das folgende 4. Beispiel ist fast identisch zum vorherigen bis auf das Fehlen des zweiten Zeitfensters bei den Orten Nr. 3 bis 8.

Tabelle 17: Eingabedaten sowie Parameter für ein viertes SDVRPTW für die ersten fünf Orte

	Orte mit Zeitfenstern, Serviczezeiten und Bedarfen					
Orte	Ort1	Ort2	Ort3	Ort4	Ort5	
Bedarfe in Paletten	50	60	300	80	90	
Zeitfenster 1	180-300	120-420	60-360	0-240	180-420	
Zeitfenster 2	540-660	600-780				
Servicezeiten	20	20	20	20	20	
SZ-Kosten/Minute	0,5	0,5	0,5	0,5	0,5	

Tabelle 18: Eingabedaten sowie Parameter für ein viertes SDVRPTW für die letzten drei Orte

	Orte mit	Zeitfenste	ern, Serviczezeiten und Bedarfen
Orte	Ort6	Ort7	Ort8
Bedarfe in Paletten	100	110	120
Zeitfenster 1	150-330	180-450	180-360
Zeitfenster 2			
Servicezeiten	6	2	4
SZ-Kosten/Minute	0,5	1	0,5

Mit den Eingabedaten und Parametern aus den Tabellen 17 und 18 wurde folgende optimale Lösung mit einem Zielfunktionswert (ZFW) von 6073,06 Euro ermittelt. Es sind zwar sechs Nebenbedingungen weggefallen, was aber nicht zu dem Trugschluss führen darf, dass wir ein besseres optimales Ergebnis erhalten. Im Gegenteil, der Wert der Zielfunktion ist um ca. 10 Euro schlechter geworden. Das liegt daran, dass durch das Wegfallen von sechs Zeitfenstern auch Möglichkeiten der Entladung wegfallen.

Eine Berechnung mit Bedarfen Modulo 36 ergab hier einen optimalen Wert von 1309,20 Euro. Die Rundtouren sind dabei erhalten geblieben. Stichtouren gibt es nur noch zum 3. Ort mit einem 15er LKW sowie zum 5. Ort mit einem 18er LKW.

Ausserdem haben sich Änderungen bei den Stichtouren zum Ort Nr. 3 sowie bei der ersten und dritten Rundtour ergeben.

In der folgenden Tabelle ist wieder eine Häufigkeitsanalyse der LKW-Typen in den Ergebnistouren notiert. Bei einer Gesamtbedarfsmenge von 910 Paletten in allen acht Orten zusammen ergibt das eine prozentuale Auslastung der Ladekapazität der LKW bei der Abfahrt vom Depot von 99,78 %.

Tabelle 19: Optimale Lösung für ein SDVRPTW mit Eingabedaten und Parametern nach Tabellen 17 und 18, ZFW=6073,06 Euro

		Err	echnete	e Stich-	und R	undtou	ren	
Orte	Ort1	Ort2	Ort3	Ort4	Ort5	Ort6	Ort7	Ort8
LKW-Typ	Errechnete Stichtouren im Optimum							
36er	1	1	7	2	2	2	3	3
33er			1					
18er					1			
15er			1					
Restbedarfe	14	24	0	8	0	28	2	12
LKW-Typ		Erre	chnete	Rundto	ouren ir	n Optii	num	
36er	2	1					3	
36er				1		2		
18er	2							1

Tabelle 20: Zusammenfassung der Ergebnistouren aus dem Beispiel von Tabelle 19

LKW-Typ	Anzahl Touren	Maximale Transportmenge
36	23	828
33	1	33
18	2	36
15	1	15
Summe	27	912

4. Schlussbemerkungen

Die Vorgestellten Lösungen sind für gleichzeitig mehrere LKW-Typen neuartig. Die Schwachstelle des zugrundeliegenden Linearen Programms ist die Lösungszeit. Die erste optimale Lösung benötigte auf einem 64-Bit Notebook mit acht GB RAM eine Einstellungszeit von 10266 Sekunden. (Damit ist die Zeit gemeint, nach der sich die Lösung einstellte.) Nach ca. 150 Sekunden war man allerdings nur noch $2\,\%$ von der optimalen Lösung entfernt.

Die zweite Lösung benötigte auf dem selben Notebook eine Einstellungszeit von 3150 Sekunden. Einen GAP von 2~% erreichte man hier nach 440 Sekunden.

Die dritte Lösung benötigte auf dem selben Notebook eine Einstellungszeit von 312 Sekunden bei einem GAP von 1,93.

Das vollständige Durchlaufen bis zum GAP von 0 % dauerte beim ersten Beispiel ca. zwei Tage, beim zweiten Beispiel 21112 Sekunden (ca. sechs Stunden), beim dritten Beispiel ca. 11000 Sekunden (ca. drei Stunden) und beim vierten Beispiel 18519 Sekunden. Bei Bedarfen Modulo 36 brauchte das dritte Beispiel nur 765 Sekunden und das vierte Beispiel nur 45 Sekunden. Um die Rechenzeit signifikant zu verkürzen, müsste man das Lineare Programm dekomponieren in ein Master- und mehrere Subprobleme. Dabei wird das Master-Problem schrittweise

aus den Lösungen der Subprobleme aufgebaut. Wenn man dann noch in jedem Schritt auf der alten Lösung des Master-Problems vom vorherigen Schritt aufsetzen kann, erhöht man die Rechengeschwindigkeit enorm. Softwaretechnisch und auch konzeptionell ist die Dekomposition aber eine sehr anspruchsvolle Aufgabe. Detallierte Ausführungen dazu findet man bei [Des2010].

Literatur

[Des2010] Guy Desaulniers, Branch-and-price-and-cut for the split delivery vehicle routing problem with time windows. Operations Research 58(1), 179-192 (2010).

 $[{\rm Mu2011}]$ Harald Mumm, Benchmark zur Tourenoptimierung, Wismarer Diskussionspapiere, Heft 7/ 2011 .

Autorenangaben

Prof. Dr. rer. nat. Harald Mumm Hochschule Wismar, Wirtschaftswissenschaftliche Fakultät Postfach 1210 23952 Wismar

Telefon: ++49 / (0)3841 / 753450E-mail: harald.mumm@hs-wismar.de

Heft 02/2010: Heft 03/2010:	Barbara Bojack: Der Suizid im Kinder- und Jugendalter Thomas Dahlmann/Andreas Hauschild/Maik Köppen/
	Alexander Kofahl/Uwe Lämmel/Stefan Lüdtke/Stefan Luttenberger: Wissensmanagement mittels Wiki-Systemen
Heft 04/2010:	temen Günther Ringle/Nicole Göler von Ravensburg: Der genossenschaftliche Förderauftrag
Heft 05/2010:	Antje Bernier/Henning Bombeck: Campus für ALLE? – Analyse der multisensorischen Barrierefreiheit von staatlichen Hochschulen in Mecklenburg-Vorpommern
Heft 06/2010:	Herbert Müller: Die Hauptsätze der Thermodynamik. Eine Neubetrachtung aus systemwissenschaftlicher Sicht mit Konsequenzen
Heft 07/2010:	Gunnar Prause (Ed.): Regional Networking as Success Factor in the Transformation Processes of Maritime Industry. Experiences and Perspectives from Baltic Sea Countries
Heft 01/2011:	Karsten Gaedt: Strategischer Bezug des externen Wachstums
Heft 02/2011:	Hubert Kneußel: Partizipationsformen der Umweltpolitik und des Energiesektors
Heft 03/2011:	Slim Lamine, Roland Rohrer, Moritz Ruland, Holger Werner: Marketing und Vertrieb als erfolgsrelevante Faktoren eines Unternehmens
Heft 04/2011:	Frauke Harder, Assaf Hoz-Klemme: Emotionale Markenkommunikation im Investitionsgütermarketing am Beispiel des Antriebssystemherstellers MTU
Heft 05/2011:	Jonas Bielefeldt: Der E-Commerce und seine Vergütungsmodelle in Bezug auf Affiliate-Marketing
Heft 06/2011:	Alexander Kirsch, Thorste S. Stoyke: Erfolgsfaktoren für eine produktive Zusammenarbeit zwischen Marketing und Vertrieb - Bestandsaufnahme, Trends, Lösungsmöglichkeiten und Grenzen der Einflussnahme
Heft 07/2011:	Harald Mumm: Benchmark zur Tourenoptimierung
Heft 08/2011:	Jürgen Hönle, Barbara Bojack: Alkohol- und Drogenprobleme von Auszubildenden als Ursache von Ausbildungsabbrüchen
Heft 09/2011:	Martin Merrbach: Globale Ungleichgewichte – Sind sie für die Finanzmarktkrise (mit-) verantwortlich?
Heft 10/2011:	Rünno Lumiste/Gunnar Prause: Baltic States Logistics and the East-West Transport Corridor
Heft 11/2011:	Joachim Winkler: Ehrenamtliche Arbeit und Zivilgesellschaft

Heft 12/2011:	Christian Reinick/Jana Zabel/Meike Specht/Judith
	Schissler: Trendanalyse im Bereich Windenergie am Beispiel Chinas
Heft 13/2011:	Thomas Kusch/Gunnar Prause/Kristina Hunke: The
	East-West Transport Corridor and the Shuttle Train "VIKING"
Heft 14/2011:	Jost W. Kramer: Miszellen zur Hochschulpolitik
Heft 15/2011:	Kristina Hunke: Oversize Transport Strategy for the
	Region Mecklenburg-Vorpommern
Heft 16/2011:	Monique Siemon: Diversity Management als
	strategische Innovation des Controllings
Heft 17/2011:	Karsten Gaedt: Bewältigung von Unternehmenskrisen
	durch Private Equity
Heft 18/2011:	Semantische WiKi-Systeme im Wissensmanagement
	von Organisationen: Das Kompetenz-Portal der
	Hochschule Wismar
11 5: 04 /0040	kompetenz.hs-wismar.de
Heft 01/2012:	Robin Rudolf Sudermann, Arian Middleton, Thomas
	Frilling: Werteorientierung als relevanter Erfolgsfaktor
Hoft 02/2012.	für Unternehmen im Zeitalter des Societing Romy Schmidt: Die Wahrnehmung der Winter-
Heft 02/2012:	Destination Tirol der Zielgruppe "junge Leute" in
	Mecklenburg-Vorpommern
Heft 03/2012:	Roland Zieseniß/Dominik Müller:
11010 05/2012.	Performancevergleiche zwischen Genossenschaften
	und anderen Rechtsformen anhand von Erfolgs-,
	Liquiditäts- und Wachstumskennzahlen
Heft 04/2012:	Sebastian Kähler/Sönke Reise: Potenzialabschätzung
	der Regionalflughäfen Mecklenburg-Vorpommerns
Heft 05/2012:	Barbara Bojack: Zum möglichen Zusammenhang von
Heft 05/2012:	Barbara Bojack: Zum möglichen Zusammenhang von Psychotrauma und Operationsindikation bei
	,
Heft 05/2012: Heft 05/2012:	Psychotrauma und Operationsindikation bei Prostatahyperplasie Barbara Bojack: Zum möglichen Zusammenhang von
	Psychotrauma und Operationsindikation bei Prostatahyperplasie Barbara Bojack: Zum möglichen Zusammenhang von Psychotrauma und Operationsindikation bei
Heft 05/2012:	Psychotrauma und Operationsindikation bei Prostatahyperplasie Barbara Bojack: Zum möglichen Zusammenhang von Psychotrauma und Operationsindikation bei Prostatahyperplasie
	Psychotrauma und Operationsindikation bei Prostatahyperplasie Barbara Bojack: Zum möglichen Zusammenhang von Psychotrauma und Operationsindikation bei Prostatahyperplasie Hans-Eggert Reimers: Early warning indicator model of
Heft 05/2012: Heft 06/2012:	Psychotrauma und Operationsindikation bei Prostatahyperplasie Barbara Bojack: Zum möglichen Zusammenhang von Psychotrauma und Operationsindikation bei Prostatahyperplasie Hans-Eggert Reimers: Early warning indicator model of financial developments using an ordered logit
Heft 05/2012:	Psychotrauma und Operationsindikation bei Prostatahyperplasie Barbara Bojack: Zum möglichen Zusammenhang von Psychotrauma und Operationsindikation bei Prostatahyperplasie Hans-Eggert Reimers: Early warning indicator model of financial developments using an ordered logit Günther Ringle: Werte der Genossenschafts-
Heft 05/2012: Heft 06/2012:	Psychotrauma und Operationsindikation bei Prostatahyperplasie Barbara Bojack: Zum möglichen Zusammenhang von Psychotrauma und Operationsindikation bei Prostatahyperplasie Hans-Eggert Reimers: Early warning indicator model of financial developments using an ordered logit